Evidential Networks from a Different
Perspective

Jifina Vejnarova

Abstract. Bayesian networks are, at present, probably the most popular rep-
resentative of so-called graphical Markov models. Naturally, several attempts
to construct an analogy of Bayesian networks have also been made in other
frameworks as e.g. in possibility theory, evidence theory or in more general
frameworks of valuation-based systems and credal sets. We collect previously
obtained results concerning conditioning, conditional independence and ir-
relevance allowing to define a new type of evidential networks, based on
conditional basic assignments. These networks can be seen as a generaliza-
tion of Bayesian networks, however, they are less powerful than e.g. so-called
compositional models, as we demonstrate by a simple example.

Keywords: Conditional independence, conditioning, evidence theory, evi-
dential networks, multidimensional models.

1 Introduction

Bayesian networks are, at present, probably the most popular representa-
tive of so-called graphical Markov models. Naturally, several attempts to
construct an analogy of Bayesian networks have also been made in other
frameworks as e.g. in possibility theory [5], evidence theory [4] or in the more
general frameworks of valuation-based systems [11] and credal sets [7].

In this paper we bring an alternative to [4], which does not seem to us
to be satisfactory, as graphical tools well-known from Bayesian networks are
used in different sense. An attempt, using the technique of the operator of

Jifina Vejnarovéa

Institute of Information Theory and Automation of the ASCR,
182 08 Prague, Czech Republic

e-mail: vejnar@utia.cas.cz

R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics, AISC 190, pp. 429-436.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

s




430 J. Vejnarovs

composition [9] was already presented in [13], but in that paper we concen-
trated ourselves only on structural properties of the network, the problem of
definition of conditional basic assignments was not solved there. After solving
this problem [15], in this paper we present a new concept of evidential net-
works, which can be seen as a generalization of Bayesian networks. However,
simultaneously we show, that these evidential networks are less powerful than
e.g. so-called compositional models.

The paper is organized as follows. After a brief summary of basic notions
from evidence theory (Section 2), in Section 3 we recall recent concepts impor-
tant for introduction of evidential networks, such as conditioning, conditional
independence and irrelevance. In Section 4 we present a theorem allowing a
direct generalization of Bayesian networks to evidential framework as well as
a simple example demonstrating the potential weakness of these networks.

2 Basic Notions

In this section we will briefly recall basic concepts from evidence theory [10]
concerning sets and set functions.

2.1 Set Projections and Joins

For an index set N = {1,2,...,n} let {X;}icy be a system of variables,
each X; having its values in a finite set X;. In this paper we will deal with
multidimensional frame of discernment Xy = X; x X3 x ... X X, and
its subframes (for K C N) Xx = X ;exX;. When dealing with groups of
variables on these subframes, X5 will denote a group of variables {X;}icx
throughout the paper.

For M ¢ K C N and A C Xg, A*M will denote a projection of A into
XM:

AM =y e Xy |Fz e Ay =2t}

where, for M = {i1,%2,...,m},
M
x‘l’ =(xi1,mi2,...,$im)€XM-

In addition to the projection, in this text we will also need an opposite opera-
tion, which will be called a join. By a join® of two sets A C X and B C X,
(K,L C N) we will understand a set

ANBZ{QZEXKULZ.’E”LKEA & :r““EB}.

Let us note that for any C' C Xy, naturally C € CY¥ 1 C+, but generally
C # CHE 5q CAL.,

! This term and notation are taken from the theory of relational databases [1].



Evidential Networks from a Different Perspective 431
2.2 Set Functions

In evidence theory [10] (or Dempster-Shafer theory) two dual measures are
used to model the uncertainty: belief and plausibility measures. Both of them
can be defined with the help of another set function called a basic (probability
or belief) assignment m on Xy, ie.,

m: PXy) — [0,1],

where P(Xy) is the power set of Xy, and } 4x, m(A) = 1. Furthermore,
we assume that m(0) = 0. A set A € P(Xy) is a focal element if m(A) > 0.
Belief and plausibility measures are defined for any A C Xy by the equal-
ities
Bel(A) = > m(B), Pi(A)= Y m(B),

BCA BNA#0

respectively. It is well-known (and evident from these formulae) that for any
Ae P(X N)

Bel(A) < PI(A), PI(A) =1 — Bel(A°), (1)

where AC is the set complement of A € P(Xy). Furthermore, basic assign-
ment can be computed from belief function via Mébius inverse:

m(4) = 3 (~1) Pl Bel(B), @)

BCA

i.e. any of these three functions is sufficient to define values of the remaining
two.

For a basic assignment m on X and M C K, a marginal basic assignment
of m on X is defined (for each A C Xjps):

3 Conditioning, Independence and Irrelevance

Conditioning and independence belong to the most important topics of any
theory dealing with uncertainty. They are cornerstones of Bayesian-like mul-
tidimensional models.

-
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3.1 Conditioning

In evidence theory the “classical” conditioning rule is so-called Dempster’s
rule of conditioning, nevertheless a lot of alternative conditioning rules for
events have been proposed [8].

However, from the viewpoint of evidential networks conditioning of vari-
ables is of primary interest. In [14] we presented two definitions of condi-
tioning by variables, based on Dempster conditioning rule and focusing, we
proved that these definitions are correct, nevertheless, their usefulness for
multidimensional models is rather questionable, as thoroughly discussed in
the above-mentioned paper.

Therefore, in [15] we proposed a new conditioning rule defined as follows.

Definition 1. Let X and Xz (KN L = () be two groups of variables with
values in X and X, respectively. Then the conditional basic assignment of
Xk given X1, € B C Xy, (for B such that m*£(B) > 0) is defined as follows:

> m(C)
CCXkur:

CYK=A&CVL=B
MXk|pXL (AlpB) = mL(B) (3)

for any A C Xg.

It is evident that the conditioning is defined only for focal elements of the
marginal basic assignment, but we do not consider it a substantial disadvan-
tage, because all the information about a basic assignment is concentrated in
focal elements. Its correctness is expressed by Theorem 1, proven in [15].

Theorem 1. Set function mx,|,x, defined for any fized B C X, such that
m*E(B) > 0 by Definition 1 is a basic assignment on Xk .

3.2 Independence and Irrelevance

In evidence theory the most common notion of independence is that of ran-
dom set independence [6]. It has already been proven [12] that it is also the
only sensible one.

This notion can be generalized in various ways [3, 11, 12]; the concept of
conditional non-interactivity from [3], based on conjunctive combination rule,
is used for construction of directed evidential networks in [4]. In this paper
we will use the concept introduced in [9, 12], as we consider it more suitable
(the arguments can be found in [12]).

g
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Definition 2. Let m be a basic assignment on Xy and K,L,M C N be
disjoint, K # 0 # L. We say that groups of variables Xz and X are
conditionally independent given X with respect to m (and denote it by
K 1L L|M [m]), if the equality

mJ,KULUM(A) _m¢M(A¢M) — miKuM(A,LKUM) . mJ,LUM(AJ,LUM) 4)

holds for any A € Xxyurunm such that A = AVEUM g AVLUM and m(A) =0
otherwise.

It has been proven in [12] that this conditional independence concept satisfies
so-called semi-graphoid properties taken as reasonable to be valid for any
conditional independence concept and it has been shown in which sense this
conditional independence concept is superior to previously introduced ones
3, 11].

Irrelevance is usually considered to be a weaker notion than independence
[6]. It expresses the fact that a new piece of evidence concerning one variable
cannot influence the evidence concerning the other variable.

More formally: group of variables X, is irrelevant to Xg (K N L = () if
for any B C Xy, such that PIVE(B) > 0 (or Bel*?(B) > 0 or m+*(B) > 0)

MXk| XL (AlB) = mJ’K(A) (5)

for any A C Xg.2

Generalization of this notion to conditional irrelevance may be done as
follows. Group of variables Xy, is conditionally irrelevant to Xx given Xy
(K,L,M disjoint, K # 0 # L) if

MX k| XLum (A|B) =MXg|Xn (A|BJ'M) (6)

is satisfied for any A C Xx and B C Xyum (whenever both sides are
defined).

Let us note that the conditioning in equalities (5) and (6) stands for an ab-
stract conditioning rule [8]. However, the validity of (5) and (6) may depend
on the choice of conditioning rule, as we showed in [14] — more precisely irrel-
evance with respect to one conditioning rule need not imply irrelevance with
respect to the other. Nevertheless, when studying the relationship between
(conditional) independence and irrelevance based on Dempster conditioning
rule and focusing we realized that they do not differ too much from each
other [14].

However, the new conditioning rule introduced by Definition 1 exhibits
much suitable properties as expressed by the following theorem proven in
[15].

2 Let us note that somewhat weaker definition of irrelevance can be found in [2],
where equality is substituted by proportionality. This notion has been later gen-
eralized using conjunctive combination rule [3].
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Theorem 2. Let K, L, M be disjoint subsets of N such that K, L # 0. If X
and X1, are independent given Xps (with respect to a joint basic assignment
m defined on Xxurunm), then Xy, is irrelevant to Xx given Xy under the
conditioning rule given by Definition 1.

4 Evidential Networks

However, in Bayesian networks also the reverse implication plays an impor-
tant role, as for the inference, the network is usually transformed into a de-
composable model. Unfortunately, in the framework of evidence theory the
reverse implication is not valid, in general, as was shown in [15]. Nevertheless,
the following assertion holds true.

Theorem 3. Let K,L, M be disjoint subsets of N such that K,L # 0 and
Mxy|pXrom D€ @ (given) conditional basic assignment of X given Xryps
and mx,,,, be a basic assignment of Xrun. If X1 is irrelevant to Xx given
X under the conditioning rule given by Definition 1, then Xx and X,
are independent given Xpr (with respect to a joint basic assignment m =
MX e |pXrom - MXpon - defined on Xgurum)-

Proof. Trrelevance of X1, to X given Xjs means that for any A C X and
any B C Xpuu such that m+'YM(B) >0

M| p Xpon (AIB) = Mixel o2 (AIBH).
Multiplying both sides of this equality by m*+““M (B)-m+M (B+M) one obtains
MX g |pXpone (A1 B) - m¥POM(B) - mH (BHY)
= My |pxas (A BYY) - mHOM(B) - mt M (BHY),
which is equivalent to
m(A x B) - m*M (B*M) = m}EVM (4 x B . mr PO (B).

Therefore, the equality (4) is satisfied for C C Xgurun such that C = AxB,
where A C Xx and B C Xrun. Due to Theorem 1 it is evident, that

> m(A x B) =1,

ACXg,BCXrum

and therefore equality (4) is trivially for satisfied also for any other C' =
CHEUM g OHEUM - and m(C) = 0 otherwise as well. Therefore, X and X1,

3 Let us note that due to Theorem 1 mx,,, is marginal to m and Mx|pxronm
can be re-obtained from m via Definition 1.




Evidential Networks from a Different Perspective 435

are independent given Xj; with respect to a joint basic assignment m =
MX | Xar “ MXron- O

This theorem makes possible to define evidential networks in a way analo-
gous to Bayesian networks, but simultaneously brings a question: are these
networks advantageous in comparison with other multidimensional models
in this framework? The following example brings, at least partial, answer to
this question.

Example 1. Let X1, X, and X3 be three binary variables with values in X; =
{ai,@;},1=1,2,3, and m be a basic assignment on X; x X3 x X3 defined as

follows
m(X1 X Xg X {5,3}) =.5,

m({(ala az, C_I‘3)’ (C_Lla (—22, a’3)}). =.5.
Variables X; and X, are conditionally independent given X3 with respect to
m. Therefore also X5 is irrelevant to X; given X3, i.e.

M| Xas (A’B) =MXy|Xs (A|B¢{3})’

for any focal element B of m+{#}. As both m*{23} and m*{3} have only two
focal elements, namely X3 x {as} and {(a2,as), (@2,as)} and {as} and X3,
respectively, we have

MX,|pXoas (X1|X2 X {6—1’3}) =MX,|pXs (X1|{d3}) =1,
Mx;|pXas (X1[{(a2,83), (@2, a3)}) = mx,|px, (X1[X3) = 1.

Using these conditionals and the marginal basic assignment m+{23} we get a
basic assignment 7 different from the original one, namely

’)’h(Xl X X2 X {63}) = .5,
7’7’L(X1 X {(0,2,@3), (ag,a;g)}) =.D.

Furthermore, if we interchange X; and X» we get yet another model, namely

ﬁ’L(Xl X Xo X {5,3}) =.5,

#(Xa x {(ay,as), (a1, a3)}) = 5. ¢

From this example it is evident, that evidential networks are less powerful
than e.g. compositional models [9], as any of these threedimensional basic
assignments can be obtained from its marginals using the operator of com-
position (cf. e.g. [9]).

5 Conclusions

We presented a conditioning rule for variables which is compatible with
our notion of conditional independence — in other words, if we use this
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conditioning rule, we obtain conditional irrelevance concept, which is implied
by this conditional independence. We also proved a theorem showing that
under some specific conditions conditional irrelevance implies conditional in-
dependence. However, by a simple example we revealed the weakness of con-
ditional basic assignments in comparison with the joint ones and therefore
also the fact that evidential networks are less powerful in comparison with

e.g.

compositional models.
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